

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Strength of Materials

Course

Field of study Year/Semester

Civil Engineering First-cycle Studies 1/2

Area of study (specialization) Profile of study

- general academic
Level of study Course offered in

First-cycle studies Polish

Form of study Requirements

full-time compulsory

Number of hours

Lecture Laboratory classes Other (e.g. online)

0 0

Tutorials Projects/seminars

30 15

Number of credit points

7

Lecturers

Responsible for the course/lecturer: Responsible for the course/lecturer:

dr hab. inż. Zbigniew Pozorski dr inż. Anna Knitter-Piątkowska

email: zbigniew.pozorski@put.poznan.pl email: anna.knitter-piatkowska@put.poznan.pl

tel. 616652096 tel. 616652048

Wydział Inżynierii Lądowej i Transportu Wydział Inżynierii Lądowej i Transportu

ul. Piotrowo 5, 60-965 Poznań ul. Piotrowo 5, 60-965 Poznań

Prerequisites

Knowledge: Mathematics: algebra (including matrix calculus), mathematical analysis (including differential and integral calculus), geometry, planimetry, trigonometry. Theoretical mechanics: knowledge of the equilibrium equations and internal forces in rod elements of a structure.

Skills: Mathematics: skills of calculation of derivatives and integrals of functions, the ability to use matrix calculus. Physics: ability to apply the principles of Newton. Theoretical mechanics: the ability to use the balance equations to determine the reactions and internal forces in statically determined bar systems.

Social competences: Students can work in groups. The student follows the rules of ethics.

Course objective

Acquiring knowledge, skills and competences in solving problems of stress, deformations and displacements in structural member elements and in the field of material strength.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Course-related learning outcomes

Knowledge

The student has detailed knowledge in the field of mechanics, strength of materials and principles of general structural design, and knows the theories explaining the complex relationships between them (obtained during the lecture). The student knows at an advanced level the principles of structure theory and analysis of rod systems in the field of statics and stability (obtained during the lecture).

Skills

The student is able to make a list of loads acting on buildings and perform static analysis of statically determinate rod structures (obtained during exercises and projects).

Social competences

The student is responsible for the reliability of the results of their work and their interpretation. The student is ready to critically assess their knowledge and received content, as well as critically evaluate the results of their own work.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Evaluation of lectures

Written test (duration: 60-90 minutes) on the date specified at the beginning of the semester. The basis for passing is to obtain a sufficient minimum score (3.0).

Rating scale: very good (5.0), good plus (4.5), good (4.0), satisfactory plus (3.5), satisfactory (3.0), insufficient (2.0).

Evaluation of exercises

The classes are passed on the basis of positive grades (at least 3.0) from tests, dates given at the beginning of the semester.

Rating scale: very good (5.0), good plus (4.5), good (4.0), satisfactory plus (3.5), satisfactory (3.0), insufficient (2.0).

Project evaluation

Project classes are passed on the basis of positive grades (at least 3.0) from project tasks. Project tasks are subjected to individual defense (oral or written form).

Rating scale: very good (5.0), good plus (4.5), good (4.0), satisfactory plus (3.5), satisfactory (3.0), insufficient (2.0)

Programme content

Lectures

- 1. Geometrical parameters of figures
- 2. Normal force
- 3. Bending moment (bending straight)
- 4. Shear force
- 5. Principal stresses
- 6. Simultaneous action of normal force and bending moment

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- 7. Skew bending
- 8. Eccentric action of normal force
- 9. Normal stresses under the foundation
- 10. Torsion of circular and thin-walled closed sections
- 11. Torsion of rods with a thin-walled open section
- 12. Determination of beams displacements
- 13. Theory of experimental research methods
- 14. Examination of the lectures

Exercises

- 1. Determination of internal forces in systems subjected to non-uniform loading
- 2. Determination of geometric parameters of figures
- 3. Analysis of axially loaded bars
- 4. Bending moment action.
- 5. Designing of cross-sections in bending, stresses in a rectangular cross-section
- 6. Colloquium
- 7. Stresses in the I-section
- 8. Stresses in the box section
- 9. Principal stresses, stress cubes
- 10. Equivalent stress
- 11. Skew bending
- 12. Eccentric action of normal force
- 13. Colloquium
- 14. Correction test

Projects

- 1. Explanation of organizational principles, discussion of subject matter, project commissioning
- 2. Project No. 1 determination of internal forces
- 3. Projects No. 2 and 2 determination of geometrical parameters of cross-sections. Defense of project No. 1.
- 4. Defense of projects no. 2 and 3
- 5. Project No. 4 determination of stresses in beams
- 6. Project No. 4 determination of stresses in beams tensors and stress cubes
- 7. Defense of project No. 4

Teaching methods

Information lecture

Practice method

Project method

Bibliography

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Basic

- 1. A. Gawęcki, Mechanika materiałów i konstrukcji prętowych, tomy 1 i 2, Wydawnictwo Politechniki. Poznańskiej 1998.
- 2. J. Dębiński, J. Grzymisławska, Ćwiczenia laboratoryjne z wytrzymałości materiałów, Wydawnictwo Politechniki Poznańskiej, 2016.
- 3. J. Dębiński, J. Grzymisławska, Wytrzymałość Materiałów cz.1-3, Wydawnictwo Politechniki Poznańskiej, 2019.

Additional

- 1. S. Piechnik, Wytrzymałość materiałów, Politechnika Krakowska, Kraków 1999
- 2. A. Jakubowicz, Z. Orłoś, Wytrzymałość Materiałów, tomy 1 i 2, WNT, Warszawa, 1999 i 1997
- 3. Z. Cywiński, Mechanika budowli w zadaniach. Układy statycznie wyznaczalne, PWN Warszawa 1999
- 4. J. Grabowski, A. Iwanczewska, Zbiór zadań z wytrzymałości materiałów, Oficyna Wydawnicza Politechniki Warszawskiej, 1994.

Breakdown of average student's workload

	Hours	ECTS
Total workload	125	5,0
Classes requiring direct contact with the teacher	80	3,0
Student's own work (literature studies, preparation for	45	2,0
laboratory classes/tutorials, preparation for tests/exam, project		
preparation) ¹		

4

¹ delete or add other activities as appropriate